Abstract

Milk preservative and freezing are used as strategies to prevent microbial growth and milk degradation, especially when immediate analytical processing is not feasible. The effects of the addition of preservative and freezing procedures have been investigated mainly in relation to milk gross chemical composition predicted through mid-infrared spectroscopy. This study aimed to determine whether different preservatives (i.e., no preservative, hydrogen peroxide, Bronopol, and Azidiol), freezing times (i.e., 0, 7, and 30 d), and temperatures of analysis (i.e., 5 and 21°C) influence the composition of milk protein fractions determined through reversed-phase HPLC. Bulk milk samples for the analysis of protein profile were collected from 5 commercial dairy farms. Data were analyzed with a linear mixed model, which included type of preservative, time of storage, temperature of analysis, and the interaction between type of preservative and time of storage as fixed effects, with the farm and the residual as random effects. Samples with no preservative had the greatest amount of all protein fractions, whereas Bronopol-preserved milk had the lowest amount. Increasing storage time under freezing conditions had a nonlinear detrimental effect on milk protein fractions. The temperature of analysis significantly contributed to the variation of κ-casein, β-casein, αS1-casein, β-lactoglobulin, and α-lactalbumin fractions. The z-scores were calculated to evaluate the similarity between detailed protein profile of fresh milk without preservative analyzed at 5°C and detailed protein profile of milk treated according to the tested conditions. Overall results suggested a good agreement between different analytical conditions. Still, short storage time under freezing conditions is recommended to avoid degradation of milk protein fractions and consequent analytical underestimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.