Abstract

Effects of nitridation condition on gallium-zinc oxynitride solid solution (GaN:ZnO) was investigated to optimize the composition of GaN:ZnO for dye-modified photocatalysts. Gallium nitride (GaN) formed from Ga2O3 at 973K, and GaN:ZnO was obtained over 1073K under NH3 gas flow. Nitrogen content in GaN:ZnO increased with increasing nitridation temperature and time, while zinc content decreased because of evaporation. Although UV–vis absorption spectra of GaN:ZnO powders were not significantly changed in different compositions, the water splitting activities of the dye-modified GaN:ZnO photocatalysts depended on the composition of GaN:ZnO. The highest formation rates of H2 and O2 were achieved by the GaN:ZnO containing 15% of zinc and 73% of nitrogen. Finally, the nitridation condition was optimized at 1123K 15h under NH3 gas flow (200ml/min) for preparation of the dye-modified GaN:ZnO powder as water splitting photocatalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.