Abstract

We examined the effect of gestational ethanol exposure on the number of axons in the caudal pyramidal tract. Between gestational day (G) 6 and G21, inclusive, pregnant rats were fed a liquid ethanol-containing diet (Et), an isocaloric liquid control diet (Ct), or a diet of chow and water (Ch). On postnatal day 30, the offspring of these rats were killed and their caudal medullas were processed for electron microscopy. The overall size of the pyramidal tract and the space occupied by the axons was smaller in the Et-treated rats than in the Ct-treated rats. The myelinated axons were smaller and the myelin was thinner in the Et-treated rats than in the Ct-treated rats. These decreases produced an ethanol-induced increase in the density of axons in the pyramidal tract. In particular, the density of myelinated axons (but not nonmyelinated axons) was greater in Et-treated rats. The net result was that the estimated number of axons in the pyramidal tracts of the Et-treated rats was not significantly different than the number in the Ch- and Ct-treated rats. The present data demonstrate that ethanol does not affect the absolute number of axons in the pyramidal tract. As a result of the ethanol-induced microencephaly, however, the data translate into a relative increase in the number of pyramidal tract axons. This relative increase matches the ethanol-induced increase in the density of corticospinal projection neurons that may result from the retention of a developmentally exuberant projection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call