Abstract

AVP synthesis, storage, and osmotically stimulated release are reduced in young adult rats exposed prenatally to ethanol (PE). Whether the reduced release of AVP to the osmotic stimulus is due to impairment of the vasopressin system or specifically to an osmoreceptor-mediated release is not known. The present experiments were done, therefore, to determine whether a hemorrhage-induced AVP response would also be diminished in PE-exposed rats. Pregnant rats were fed either a control liquid diet [no prenatal ethanol (NPE)] or a liquid diet with 35% of the calories from ethanol from days 7-21 of pregnancy. Offspring were weaned at 3 wk of life. At 11 wk of age, femoral arterial catheters were surgically placed, and blood volumes were determined at 12 wk. Three days later, two hemorrhages of 10% of the blood volume were performed with samples taken before and 10 min after the hemorrhages. After a 20% blood loss, plasma AVP was 19% higher in NPE rats than in the PE rats despite no differences in mean arterial blood pressure (MABP). Also, hypothalamic AVP mRNA and pituitary AVP content were reduced in PE rats. Furthermore, confirming an earlier report of sex differences in AVP release, the hemorrhage-induced hormone response was twofold greater in female rats than male rats, regardless of previous ethanol exposure. These studies demonstrate that the AVP response to hemorrhage is reduced in PE rats independently of differences in MABP. The data are compatible with a theory of a reduced number of hemorrhage-responsive vasopressinergic neurons capable of stimulated AVP release in PE rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.