Abstract

Various preheating treatment and cooling rates conditions were carried out in Tungsten Inert Gas welding to study mechanical behavior and microstructural evolution of AA5083-H321 aluminum alloy welded joints. The microstructural analysis illustrated the diverse grain size during welding at different preheating and cooling rate. The highest preheat temperature caused to enlarge dendritic grains and during the fastest cooling rate formed the smaller grains. Also, the texture and grain size impressed on tensile behavior and hardness welds. Grain structure of the heat-affected zone, partially melted zone, and weld metal appeared to have a tangible relationship with preheating and cooling rate conditions. The microhardness of these regions increased by increasing the cooling rate and decreasing the preheating temperature. The high preheating had a negative effect on the hardness and width of different zones of welded joints. The results showed that the cooling rate has remarkable effects on the mechanical properties of the welded specimen.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.