Abstract

Precipitation use efficiency (PUE) is crucial in understanding the coupling between ecosystem carbon and water cycling. In this study, we used a time series (2000–2013) dataset of net primary productivity (NPP) based on the Carnegie–Ames–Stanford Approach (CASA) model together with precipitation to reveal the spatial and temporal patterns of alpine grassland PUE in Northern Tibet. The mean annual PUE values of alpine meadow, alpine meadow steppe, alpine steppe, alpine desert steppe, and alpine desert were 0.48, 0.39, 0.36, 0.29 and 0.23 gc m−2 mm−1, respectively. The spatial patterns of PUE of alpine grassland demonstrated an initial increase in the arid region and a subsequent decrease in the humid region along the precipitation gradient and peaked at approximately 500 mm. To evaluate the temporal patterns, the sensitivity Slope and the Pearson correlation coefficient {R}_{xy} between the PUE and climatic factors were calculated. The inter-annual variability of PUE exhibited a significant negative correlation with annual precipitation (P < 0.05), which implies that NPP had a lower sensitivity to precipitation in most regions. The relationship between PUE and the mean annual temperature is different for different regions. Our findings have an important role in understanding the impacts of precipitation availability on climate change and in the scientific management of the alpine grassland ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.