Abstract

Extinction by ice and rain at the AMSU frequencies used in water vapor profile retrievals is investigated with DMSP observations and brightness temperature simulations of a convective storm system. The simulations are based on mesoscale forecast model output of atmospheric, cloud, and rain profiles from which the absorption and scattering due to both liquid and frozen hydrometeors are calculated. Comparison with satellite observations indicates discrepancies of more than 90% (up to 60 K), of which only about 20% results from ignoring scattering by model-prescribed ice. The major source of error is the inability of the forecast model to produce the spatially localized high ice concentrations which cause the low microwave brightness temperatures. A criterion based on the difference between measured brightness temperatures at 183.31/spl plusmn/3 and 183.31/spl plusmn/1 GHz is suggested to screen out convective events before water vapor retrieval. Application to the case study examined improved agreement between simulated and observed brightness temperatures by up to a factor of two.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.