Abstract

Effects of both tensile and compressive pre-strain on cyclic deformation of Z2CN18.10 austenitic stainless steel under stress cycling with mean stress are studied. As compared to as-received material, ratcheting strain of subsequent stress cycling decreases with increasing tensile pre-strain (TP) level. Lower level of compressive pre-strain (CP) is found to accelerate ratcheting strain accumulation while higher level of CP retards the accumulation. Tensile pre-straining is beneficial to ratcheting–fatigue life while compressive pre-straining is detrimental. A modified fatigue model to address the effect of pre-straining is proposed to predict the fatigue lives of the stress cycling tests with mean stress.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.