Abstract

In a typical process, C-Mn steel was annealed at 800°C for 180 s, and then cooled rapidly to obtain the ferrite-martensite microstructure. After pre-straining, the specimens were baked and the corresponding bake-hardening (BH) values were determined as a function of pre-strain, baking temperature, and baking time. The influences of pre-strain, baking temperature and baking time on the microstructure evolution and bake-hardening behavior of the dual-phase steel were investigated systematically. It was found that the BH value apparently increased with an increase in pre-strain in the range from 0 to 1%; however, increasing pre-strain from 1% to 8% led to a decrease in the BH value. Furthermore, an increase in baking temperature favored a gradual improvement in the BH value because of the formation of Cottrell atmosphere and the precipitation of carbides in both the ferrite and martensite phases. The BH value reached a maximum of 110 MPa at a baking temperature of 300°C. Moreover, the BH value enhanced significantly with increasing baking time from 10 to 100 min.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call