Abstract

PurposeThe study aims to investigate the effects of pre-loading histories (pre-shearing and pre-consolidation) on the liquefaction behaviour of saturated loose sand via discrete element method (DEM) simulations.Design/methodology/approachThe pre-shearing history is mimicked under drained conditions (triaxial compression) with different pre-shearing strain levels ranging from 0% to 2%. The pre-consolidation history is mimicked by increasing the isotropic compression to different levels ranging from 100 kPa to 300 kPa. The macroscopic and microscopic behaviours are analysed and compared.FindingsTemporary liquefaction, or quasi-steady state (QSS), is observed in most samples. A higher pre-shearing or pre-consolidation level can provide higher liquefaction resistance. The ultimate state line is found to be unique and independent of the pre-loading histories in stress space. The Lade instability line prematurely predicts the onset of liquefaction for all samples, both with and without pre-loading histories. The redundancy index is an effective microscopic indicator to monitor liquefaction, and the onset of the liquefaction corresponds to the phase transition state where the value of redundancy index is one, which is true for all cases irrespective of the proportions of sliding contacts.Originality/valueThe liquefaction behaviour of granular materials still remains elusive, especially concerning the effects of pre-loading histories on soils. Furthermore, the investigation of the effects of pre-consolidation histories on undrained behaviour and its comparison to pre-sheared samples is rarely reported in the DEM literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call