Abstract

Exposure by women to stressors before pregnancy increases their risk of contracting prenatal depression, a condition which typically may require antidepressant treatment. And even though such perinatal antidepressant treatment is generally considered to be safe. For the mother, its effects on the development and functioning of the offspring`s brain remain unknown. In this study, we aimed to investigate the effects of pregestational chronic unpredictable stress (CUS) and perinatal bupropion on the anxiety behavior and firing activity of the dorsal raphe nucleus (DRN) serotonin (5-HT) neurons. Female rats underwent CUS for three weeks before mating. Bupropion was administered to them from gestation day ten until their offspring were weaned. Behavioral (elevated plus maze or EPM test) and neurophysiological (single-unit in vivo electrophysiology) assessments were performed on offspring who reached the age of 48–56 days. We found that maternal CUS and perinatal bupropion, as separate factors on their own, did not change offspring behavior. There was, however, an interaction between their effects on the number of entries to the open arms and time spent in the intersection: maternal CUS tended to decrease these values, and perinatal bupropion tended to diminish CUS effect. Maternal CUS increased the firing activity of 5-HT neurons in males, but not females. Perinatal bupropion did not alter the firing activity of 5-HT neurons but tended to potentiate the maternal CUS-induced increase in 5-HT neuronal firing activity. The CUS-induced increase in firing activity of 5-HT neurons might be a compensatory mechanism that diminishes the negative effects of maternal stress. Perinatal bupropion does not alter the offspring`s anxiety and firing activity of 5-HT, but it does intervene in the effects of maternal stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call