Abstract

In-service masonry arch road bridges, mainly realised before the first half of the last century, represent a wide portion of the entire worldwide infrastructural asset. Given their age, during their service life these structures could have experienced damage due to anthropic (i.e. traffic) and natural (i.e. earthquakes, soil settlements, degradation, etc.) actions which may have inevitably affected their load-bearing capacity. The present study addresses the problem of the residual capacity estimation of damaged bridges by investigating the impact of previous loading on the actual strength of the structure. In particular, reference to a past experimental activity retrieved from the literature on reduced-scale bridges subjected to concentrated vertical loads has been made to calibrate a reliable detailed finite element model in Abaqus software. Then, damage of different extent has been introduced by simulating the transit of vehicles of various weights on the structure and the residual capacities of the bridge have been assessed and compared against the undamaged configuration. The results confirm that pre-existing damage due to traffic loading may significantly influence the capacity of such structures, with peak load reductions up to 60% estimated through the proposed methodology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.