Abstract

The impaired function of angiogenic factors, including vascular endothelial growth factor (VEGF), during pregnancy is associated with preeclampsia and intrauterine growth restriction. To determine how the attenuation of VEGF signals during retinal vascular development affects retinal vascular growth and patterns, we examined the effects of pre- and post-natal treatment of mice with KRN633, a VEGF receptor tyrosine kinase inhibitor, on retinal vascular development and structure. Delays in retinal vascular development were observed in the pups of mother mice that were treated daily with KRN633 (5 mg/kg/day) from embryonic day 13.5 until the day of delivery. A more marked delay was seen in pups treated with the inhibitor (5 mg/kg/day) on the day of birth and on the following day. Pups treated postnatally with KRN633 showed abnormal retinal vascular patterns, such as highly dense capillary networks and decreased numbers of central arteries and veins. The high-density vascular networks in KRN633-treated pups showed a greater sensitivity to VEGF signaling inhibition than the normal vascular networks in vehicle-treated pups. Compared to vehicle-treated pups, more severe hypoxia and stronger VEGF mRNA expression were observed in avascular areas in KRN633-treated pups. These results suggest that a short-term loss of VEGF function at the earliest stages of vascular development suppresses vascular growth, leading to abnormal vascular patterning, at least in part via mechanisms involving VEGF in the mouse retina.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call