Abstract

This study investigated the effect of a 3-week power-oriented resistance training program performed at moderate altitude on leg power output variables in a countermovement jump, a related judo technique (ippon-seoi-nage) and the relationship between them. Twenty-four elite male judokas were randomly assigned to a hypobaric hypoxia or normoxia group. Mechanical outputs from an incremental loaded countermovement jump test and the kinematic variables transferred to a dummy during an ippon-seoi-nage test (time to execution and movement accelerations) were assessed before, after, 1 and 2 weeks after training. Results indicated an increase in explosive leg capacity both at moderate altitude (2320 m.a.s.l.) and sea level. The hypoxia group showed additional benefits when compared to normoxia group for peak velocities with different percentages of the body weight, maximal theoretical velocity and jump height after the training period, and these additional benefits in jump height were maintained 2 weeks after training. The hypoxia group achieved a higher peak performance in peak velocity and jump height than normoxia group (peak velocity: 8.8 vs. 5.6%, jump height: 8.2 vs. 1.4%, respectively) and was achieved earlier in hypoxia (after training) than in normoxia (1 week after training). However, there was a detrimental effect for the hypoxia group on the times of execution and acceleration of the ippon-seoi-nage compared to the normoxia group. These results suggest that altitude training may induce faster and greater improvements in explosive leg extension capacity. Specific technique-oriented training should be included at altitude to prevent technique impairment.

Highlights

  • IntroductionStrength and power levels are widely considered a potential predictor of judo performance

  • MATERIALS AND METHODSStrength and power levels are widely considered a potential predictor of judo performance

  • Compared to pre-training, hypoxia group displayed the best performance in peak velocity earlier, at Post-0 (8.8 ± 1.3%), while normoxia group reached this value at Post-1 (5.6 ± 0.7%)

Read more

Summary

Introduction

Strength and power levels are widely considered a potential predictor of judo performance. Throwing techniques are known to require high levels of strength and power to be performed at high velocities and against a great resistance from the opponent (Bonitch-Domínguez et al, 2010; Franchini et al, 2011). The leg extension action has been considered of paramount importance in the technical performance of ippon-seoi-nage (Ishii et al, 2018), being responsible for the last part of this technique. The application of a power-oriented training program that enhances leg pushing capacity of judokas is crucial to improve performance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call