Abstract

Aiming to solve the serious porosity defects in laser welded girth joints of thin-walled tube and end plug made of nano-sized Ce2O3 doped Mo alloy (NC-Mo), the influences of laser power modulation, multipass remelting and zirconium (Zr) addition on the number, size and distribution of porosity defects were experimentally studied. By utilizing X-ray computed tomography (XCT), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) analysis, transmission electron microscope (TEM) and Raman spectrum (RS), the porosity feature of welded joints achieved under various conditions was analyzed. The results showed that welding cycles had a significant influence on the porosity ratio of fusion zone (FZ) while the amplitude and frequency of laser power waveform slightly influenced the porosity. When the welding cycles increased from 2 to 8, the porosity ratio of FZ decreased from about 1.00% to about 0.48% and the maximum and average pore diameters reduced by about 53% and 27%, respectively. Adding minor Zr in molten pool can further reduce the RP of FZ to about 0.35%. Through analysis, it can be seen that the pores in FZ can be divided into irregularly-shaped keyhole-induced pores and spherical metallurgy-induced pores. The latter was generated possibly because some impurity elements (including O and H) pre-existing in base metal (BM). Increasing welding cycles can promote the gas in molten pool to float and outflow, thus significantly decreasing the porosity. Moreover, Zr added in molten pool can be preferentially reacted with O to generate ZrO2, which can inhibit the precipitation of volatile MoO2 to thus suppress the generation of metallurgy-induced pores.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.