Abstract

The addition of powdered activated carbon (PAC) to remove micropollutants is a commonly used technology to improve drinking water quality. However, the effects of PAC dosing strategy on the coagulation-flocculation process of water treatment have not been well understood, especially for water with low amounts of inorganic particles. Therefore, the current research aimed to comprehensively study the effects of simultaneous addition of PAC and aluminum sulfate (AS) coagulants (denoted as PAC-AS) or adding PAC 2 h before coagulation (denoted as PAC2h-AS) on the coagulation behavior in humic acid (HA) and HA-kaolin water treatment. The results showed that the floc size, growth rate, breakage factor, and fractal dimension were all enhanced by PAC-AS and PAC2h-AS for HA but not for HA-kaolin water treatment. In HA water treatment, PAC-AS reached a larger floc size and faster growth rate, while PAC2h-AS achieved a larger floc breakage factor and fractal dimension value. For PAC2h-AS, the pre-adsorption of HA onto PAC would lower the initial particle concentration and reduce the collision probability during HA water coagulation process; thus, the DOC removal efficiency, floc size, and growth rate of PAC2h-AS were relatively smaller than those of PAC-AS. For the floc strength and floc fractal dimension, the pre-adsorption of HA onto PAC contributed to formation of stronger inter-particle bonds; thus, stronger and more compact flocs were formed by PAC2h-AS compared with those of PAC-AS. The addition of PAC had a smaller impact on the floc properties in HA-kaolin water treatment owing to its higher initial particle concentration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.