Abstract

We have studied the effect of K on the adsorption of methanol on the β-Mo 2C(001) surface and compared our experimental data with theoretical calculations. We have also performed high resolution electron energy loss spectroscopy (HREELS) (LK, ELS3000). For calculations we used the density functional theory under the VASP implementation. The most favorable sites for methanol adsorption are on top of a Mo atom in the clean surface and on top of a K atom in the pre-dosed surface. The changes in the work function fit our model as the surface withdraws charge from the adsorbate. The changes in the computed vibrational frequencies also agree with the HREELS results at very low coverage. The C–O bond distance increases while the O–H bond decreases making a C–O bond breakage a possibility on K covered surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.