Abstract

The carbonization of coal/KOH mixtures were investigated to identify the influence of potassium distributions on characteristics of the final products. The products were characterized using TGA, BET, TEM and adsorption of lead from its aqueous solutions with initial concentrations of 10–100 ppm. For the activated carbon obtained at 600 °C, the potassium distribution affected both the BET surface areas (661–1994 m 2/g) and the meso- and micro-pore volumes ratios (0.48–0.91). There were also evolutions of nanostructures of both straight and curved tubular morphologies as evidenced by TEM micrograph. The samples exhibited different adsorptive capacities when tested in adsorption of lead from aqueous solutions. The adsorption followed second order kinetics and the equilibrium data were better described by empirical Freudlich isotherm model. The amount of lead adsorbed ranges from 4.3 to 47.3 mg/g. Thus, different degrees of potassium effects led to activated carbons with different surface and adsorptive properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call