Abstract

SummaryThe effect of potassium carbonate on soil chemical characteristics was compared with that of the most common de‐icer, sodium chloride, in a 4‐yr outdoor pot experiment with poplar and lime trees. Soil pH was raised more by K2CO3 than by NaCl. Potassium carbonate increased the electrical conductivity mainly in the upper soil layers. When K2CO3 was applied at an average annual dose of 154 g m−2, only the water‐soluble fractions of calcium and magnesium were affected. At an average annual dose of 617 g m−2, total potassium increased by 33% and calcium was displaced from the exchange sites. Calcium saturation was reduced from 85% of the cation exchange capacity in the untreated control to 69% in the higher dose K2CO3 treatment and to 75% in the NaCl treatment. The results show that the negative impact of K2CO3 on soil chemical and osmotic properties is as high as that of NaCl. For plants, however, potassium carbonate in contrast to chloride is not toxic and, applied in moderate doses, may even remedy potassium deficiencies in roadside trees.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call