Abstract

Changes in shoulder position influence motor cortical outflow to Abductor Digiti Minimi (ADM) muscle in healthy humans. We examined whether these changes may affect finger tremor of central origin. Subjects had their shoulder positioned in two different configurations: 30° horizontal adduction (ANT) and 30° horizontal abduction (POST) with respect to neutral position at 0° in the horizontal plane. In healthy subjects, patients with Parkinsonian tremor (PT) and essential tremor (ET), transcranial magnetic stimulation (TMS) of the motor cortex was performed under resting and active conditions in ANT and POST. PT, ET and physiological tremor (PhT) were studied by accelerometric recordings from the little finger and by EMG activity from ADM and Extensor Carpi Radialis (ECR) in ANT and POST. In healthy and ET subjects, ADM motor evoked responses (MEPs) to TMS were smaller under resting, but larger under active conditions in POST. In PT patients, MEPs showed no difference at rest in ANT but were lower during ADM activation in POST. PT decreased, whereas ET increased in POST. These changes were paralleled by a decrease in PT EMG power and an increase in ET EMG power in POST. In PhT, there was no difference in tremor amplitude between ANT and POST. PT decrease and ET increase in POST parallel the changes in motor cortical outflow to ADM induced by modification of shoulder position under active conditions. This may be evidence for altered premotor–motor interaction at cortical level in PT, and for a role of the motor cortex in generating ET.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call