Abstract

The use of transcranial magnetic stimulation (TMS) to evaluate corticomotor excitability of lower limb (LL) muscles can provide insights about neuroplasticity mechanisms underlying LL rehabilitation. However, to date, a majority of TMS studies have focused on upper limb muscles. Posture-related activation is an important under-investigated factor influencing corticomotor excitability of LL muscles. The purpose of this study was to evaluate effects of posture and background activation on corticomotor excitability of ankle muscles. Fourteen young neurologically-unimpaired participants (26.1±4.1 years) completed the study. TMS-evoked motor evoked potentials (MEPs) were recorded from the tibialis anterior (TA) and soleus during 4 conditions - standing, standing coactivation, sitting, and sitting coactivation. TA and soleus MEP amplitudes were compared during: (1) standing versus sitting;(2) standing coactivation (standing while activating both TA and soleus) versus sitting coactivation; and (3) standing coactivation versus standing. For each comparison, background EMG for TA and soleus were matched. Trial-to-trial coefficient of variation of MEP amplitude and coil-positioning errors were additional dependent variables. No differences were observed in TA or soleus MEP amplitudes during standing versus sitting. Compared to sitting coactivation, larger MEPs were observed during standing coactivation for soleus but not TA. Compared to standing, the standing coactivation task demonstrated larger MEPs and reduced trial-to-trial MEP variability. Our findings suggest that incorporation of measurements in standing in future TMS studies may provide novel insights into neural circuits controlling LL muscles. Standing and standing coactivation tasks may be beneficial for obtaining functionally-relevant neuroplasticity assessments of LL musculature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.