Abstract

CoCr alloys are widely used as human implants because of both their superior corrosion resistance and superior mechanical properties (fatigue, wear resistance, etc.) respect to other metal alloys used in biomedical field. In particular, CoCrW alloys are used mainly to produce dental implants. In this study, the effects of thermal treatment on the corrosion resistance and wet wear resistance of CoCrW alloys produced via Laser-Powder Bed Fusion (L-PBF) were investigated, and the corrosion resistance and wet wear resistance of the L-PBF specimens were compared with those of the specimens obtained after forging. The heat treatment involved the solubilization of the alloy at 1150 °C in an Ar-saturated atmosphere, followed by furnace cooling. A detailed microstructural characterization of the L-PBF specimens was carried out using a light microscope and a scanning electron microscope in both the horizontal and vertical growth directions. Scanning Kelvin probe measurements were performed on the heat-treated specimens obtained by three-dimensional printing and forging. The void contents of the specimens were evaluated using the Archimedes’ method and image analysis. Vickers (HV2) hardness measurements were performed to evaluate the mechanical properties of the specimens. The corrosion properties of the specimens were evaluated by carrying out potentiodynamic tests in two different corrosive media (aqueous solution (9 g/L NaCl) at pH = 2 and 7). The corroded areas of the specimens were then examined using scanning electron microscopy (SEM). Finally, tribological tests were performed using the pin (Ti counter material)-on-flat configuration under dry and wet conditions, using the same corrosive environments as those used in the potentiodynamic tests and two different stroke lengths. The worn samples were characterized using SEM to investigate their wear mechanisms, and a stylus profilometer was used to determine the wear rates of the materials. The experimental results showed that the additively manufactured CoCrW L-PBF alloy had higher corrosion resistance than the wrought material. In addition, the additively manufactured material showed better dry and wet wear performances than the wrought material. Nevertheless, the heat treatment did not affect the properties evaluated in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call