Abstract
The artificial rearing model was used to investigate the effects of short-term exposure to ethanol on growth and fatty acid composition of forebrain (FB) and cerebellum (CB) during the brain growth spurt in either n-3 fatty acid-adequate (AD) or n-3 deficient (DEF) rat pups. On postnatal day 5, offspring of female rats that had been fed AD or DEF diets from day 5 of life were assigned to three groups: members of two groups were gastrostomized and artificially fed formulas appropriate for their maternal history, and the third group (suckled control) was fostered to lactating dams of a similar dietary history. Half of the artificially reared pups in each dietary condition were fed ethanol in their formula (7% vol/vol) in one-quarter of their daily feedings, while the others received maltose-dextrin substituted isocalorically for ethanol. Blood alcohol concentrations did not differ between the dietary groups. FB weight on postnatal day 9 was lower in ethanol-exposed offspring in both dietary conditions. Brain fatty acid composition reflected dietary history in that, compared with AD pups, DEF pups had lower percentages of docosahexaenoic acid, higher percentages of 22:5n-6, and a higher n-6/n-3 fatty acid ratio. However, the effects of ethanol exposure were inconsistent, lowering the n-6/n-3 ratio in the phosphatidylethanolamine (PE) fraction in FB but not in CB, while increasing this ratio in the phosphatidylcholine (PC) fraction in FB of the DEF pups only. Thus, while ethanol had some effects on lipid composition, there was no difference between the dietary groups in their vulnerability to the effects of early short-term ethanol exposure on brain growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.