Abstract

By using the sacrificial layer (SL) etching, GaAs substrates are separated from III–V epi substrate//Si substrate junctions that are made by surface activated bonding (SAB) technologies. The post-bonding low-temperature (300-∘C) annealing plays an essential role in achieving a promising (∼90%) bonding yield. The effects of the post-bonding annealing are investigated by hard X-ray photoemission spectroscopy and current–voltage measurements of GaAs//Si bonding interfaces. It is found that the concentration of oxygen atoms at interfaces is reduced and the resistance decreases to 1.6–2.1 mΩcm2 by the low-temperature annealing. Aluminum fluoride complexes are not observed by X-ray photoelectron spectroscopy on the exposed surfaces of separated GaAs substrates. The roughness average of the surfaces is ≈0.25–0.30 nm. The characteristics of double junction cells fabricated on the GaAs//Si junctions prepared by the SL etching are almost the same as those of cells fabricated by dissolving GaAs substrates after bonding. These results indicate that multijunction cells could be fabricated in a process sequence compatible with reuse of GaAs substrates by combining the SL etching and SAB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call