Abstract
The influence of microporous particulate carbon char on the mechanical, thermal, and tribological properties of wear-resistant Al-13.5Si-2.5Mg alloy composites was studied. Large increases in surface area due to the formation of micropores in coconut shell chars were achieved by high-temperature activation under CO2 gas flow. Activated char particles at 0.02 Vf were used to reinforce the alloy. The composites were fabricated via a double-compaction reaction sintering technique under vacuum at a compaction pressure of 250 MPa and sintering temperature of 600 °C. At more than 35% burn-off of the carbon chars at the temperature of activation, 915 °C, the total surface area remained virtually unaffected. The ultimate tensile strength and hardness decreased by 23% and 6 %, respectively; with increasing surface area of the reinforcement from 123 to 821 m2g−1. The yield strength and the percentage of elongation decreased by a factor of 2 and 5, respectively. No significant change in sliding wear rate was observed but the coefficient of friction increased by 13 % (0.61 to 0.69). The coefficient of linear thermal expansion was reduced by 16 % (11.7 × 10−6 to 9.8 × 10−6 °C−1), and remained unaffected at more than 35 % burn-off. Energy-dispersive spectrometry of the particles of the activated chars showed that oxides of potassium and copper coated the open surfaces. Failure at the matrix-char interface was observed, and this was attributed to localized presence of oxides at the interfaces as identified by electron probe microanalysis. Poor wetting of the oxides by magnesium at the sintering conditions resulted in formation of weak matrix-char interface bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.