Abstract

We report the synthesis of a polyimide matrix with a low dielectric constant for application as an intercalation material between metal interconnections in electronic devices. Porous activated carbon was embedded in the polyimide to reduce the dielectric constant, and a thin film of the complex was obtained using the spin-coating and e-beam irradiation methods. The surface of the thin film was modified with fluorine functional groups to impart water resistance and reduce the dielectric constant further. The water resistance was significantly improved by the modification with hydrophobic fluorine groups. The dielectric constant was effectively decreased by porous activated carbon. The fluorine modification also resulted in a low dielectric constant on the polyimide surface by reducing the polar surface free energy. The dielectric constant of polyimide film decreased from 2.98 to 1.9 by effects of porous activated carbon additive and fluorine surface modification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.