Abstract

Abstract Uniaxial tensile tests and scanning electron microscopy (SEM) experiments were carried out on the porous FeAl intermetallics (porosities of 41.1%, 44.2% and 49.3%, pore size of 15–30 μm) prepared by our research group to study the macroscopic mechanical properties and microscopic failure mechanism. The results show that the tensile σ–ɛ curves of the porous FeAl with different porosities can be divided into four stages: elasticity, yielding, strengthening and failure, without necking phenomenon. The elastic modulus, ultimate strength and elongation decrease with the increase of porosity and the elongation is much lower than 5%. A macroscopic brittle fracture appears, and the microscopic fracture mechanism is mainly intergranular fracture, depending on the Al content in the dense FeAl intermetallics. In addition, the stochastic porous model (SPM) with random pore structure size and distribution is established by designing a self-compiling generation program in FORTRAN language. Combined with the secondary development platform of finite element software ANSYS, the effective elastic moduli of the porous FeAl can be determined by elastic analysis of SPM and they are close to the experimental values, which can verify the validity of the established SPM for analyzing the elastic properties of the porous material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.