Abstract

One of the conventional ways to improve the mechanical behavior of soils is to mix them with cementing agents such as cement, lime and fly ash. Recently, introduction to alternative materials or sub-products that can be adopted to improve the soil strength is of paramount importance. Therefore, the present study aims to investigate the effects of porosity (η), dry unit weight (γd) of molding, cement content (C) and porosity/volumetric cement content ratio (η/Civ) or void/cement ratio on the unconfined compressive strength (qu or UCS) of silty soil–roof tile waste (RT) mixtures. Soil samples are molded into four different dry unit weights (i.e. 13 kN/m3, 13.67 kN/m3, 14.33 kN/m3 and 15 kN/m3) using 3%, 6% and 9% cement and 5%, 15% and 30% RT. The results show that with the addition of cement, the strength of the RT–soil mixtures increases in a linear manner. On the other hand, the addition of RT decreases qu of the samples at a constant percentage of cement, and the decrease in porosity can increase qu. A dosage equation is derived from the experimental data using the porosity/volumetric cement content ratio (η/Civ) where the control variables are the moisture content, crushed tile content, cement content and porosity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call