Abstract

AbstractThis paper describes the effects of porosity and thermal ageing at 950°C for 4000 hr. in air on in-plane cracking behavior of plasma-sprayed thermal barrier coating (TBC) made up of 8 % yittria-stabilized zirconia. The in-plane TBC cracking was analyzed by a protruded TBC bend testing technique together with finite element stress analysis. As-deposited and aged TBC protruded specimens showed a large variation of porosity depending on the location of specimen extraction. The critical local tensile stress (s) necessary for the initiation of in-plane cracks for each specimen with different porosity was determined using elastic moduli (E) estimated from the porosity dependence of E. The s for in-plane cracking of the as-deposited TBC initially increased with increasing porosity and showed a peak when the porosity reached 0.23. It was shown that in-plane cracking at the interface of TBC and thermally grown oxides required much higher s than that at the interface of TBC and bond coatings. The thermal ageing led to a slight increase in s for away-from-interfacial TBC cracking. The dependence of in-plane TBC cracking behavior on the porosity is discussed in terms of effective critical stress via the Griffith criterion for porous materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call