Abstract

The effects of the pore diameter, bath surface pressure, and nozzle diameter on the bubble formation from a porous bottom nozzle placed in a water bath and on the behavior of rising bubbles were investigated with still and high-speed video cameras and a two-needle electroresistivity probe. Three types of bubble dispersion patterns were observed with respect to gas flow rate, and they were named the low, medium, and high gas flow rate regimes. The transition boundaries between these gas flow rate regimes were expressed in terms of the superficial velocity at the nozzle exit, i.e., the volumetric gas flow rate per unit nozzle surface area. These transition boundaries were dependent on the pore diameter but hardly dependent on the bath surface pressure and the porous nozzle diameter. The characteristics of rising bubbles in each gas flow rate regime were investigated as functions of the three parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.