Abstract

Compressional‐wave velocity [Formula: see text] and quality factor [Formula: see text] have been measured in Berea and Michigan sandstones as a function of confining pressure [Formula: see text] to 55 MPa and pore pressure [Formula: see text] to 35 MPa. [Formula: see text] values are lower in the poorly cemented, finer grained, and microcracked Berea sandstone. [Formula: see text] values are affected to a lesser extent by the microstructural differences. A directional dependence of [Formula: see text] is observed in both sandstones and can be related to pore alignment with pressure. [Formula: see text] anisotropy is observed only in Berea sandstone. [Formula: see text] and [Formula: see text] increase with both increasing differential pressure [Formula: see text] and increasing [Formula: see text]. The effect of [Formula: see text] on [Formula: see text] is greater at higher [Formula: see text]. The results suggest that the effective stress coefficient, a measure of pore space deformation, for both [Formula: see text] and [Formula: see text] is less than 1 and decreases with increasing [Formula: see text].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.