Abstract

One hundred eight gilts (initial weight = 58.5 kg) were used to determine the effects of porcine somatotropin (pST) and dietary P on growth performance and bone mechanical properties and mineralization during the finishing phase (58 to 105 kg) and a 35-d postfinishing phase. Gilts were injected daily with placebo (control) or 4 mg of pST and fed diets containing .4, .8, or 1.2% P in a 2 x 3 factorial arrangement. From 58 to 105 kg, administration of pST increased (P < .01) ADG and G/F and decreased (P < .01) ADFI. When mean weight of the gilts in a pen reached 105 kg, half the gilts were slaughtered and first rib, femur, and third and fourth metacarpals were collected for determination of mechanical properties and bone ash. A pST x P interaction was observed (P < .05) for rib bending moment and modulus of elasticity; maximum rib bending moment was attained by control gilts at .8% P and rib modulus of elasticity values remained constant across P levels, whereas rib bending moment and modulus of elasticity increased as dietary P increased from .4 to 1.2% in pST-treated gilts. Administration of pST decreased (P < .05) stress of the rib, femur, and metacarpals compared with control gilts. Increasing dietary P resulted in a linear (P < .10) increase in bending moment, stress, and ash content for rib, femur, and metacarpal bones. The remaining 54 gilts were individually fed 1.8 kg/d of a common diet for 35 d postfinishing.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.