Abstract

Copper oxide nanoparticles (CuO NPs) and ciprofloxacin (CIP) have ecological risk to humans and ecosystems. Polyvinylchloride microplastics (PVC MPs), as a representative of microplastics, may often coexist with CuO NPs and CIP in wastewater treatment systems due to their widespread application. However, the co-impact of PVC MPs in wastewater systems contained with CuO NPs and CIP on nitrogen removal and ecological risk is not clear. In this work, PVC MPs co-impacts on the toxicity of CuO NPs and CIP to aerobic granular sludge (AGS) systems and potential mechanisms were investigated. 10 mg/L PVC MPs co-addition did not significantly affect the nitrogen removal, but it definitely changed the microbial community structure and enhanced the propagation and horizontal transfer of antibiotics resistance genes (ARGs). 100 mg/L PVC MPs co-addition resulted in a raise of CuO NP toxicity to the AGS system, but reduced the co-toxicity of CuO NPs and CIP and ARGs expression. The co-impacts with different PVC MPs concentration influenced Cu2+ concentrations, cell membrane integrity, extracellular polymeric substances (EPS) contents and microbial communities in AGS systems, and lead to a change of nitrogen removal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.