Abstract

For a decade, solution-processed functional materials and various printing technologies have attracted increasingly the significant interest in realizing low-cost flexible electronics. In this study, Cu nanoparticles are synthesized via the chemical reduction of Cu ions under inert atmosphere. To prevent interparticle agglomeration and surface oxidation, oleic acid is incorporated as a surface capping molecule and hydrazine is used as a reducing agent. To endow water-compatibility, the surface of synthesized Cu nanoparticles is modified by a mixture of carboxyl-terminated anionic polyelectrolyte and polyoxylethylene oleylamine ether. For reducing the surface tension and the evaporation rate of aqueous Cu nanoparticle inks, the solvent composition of Cu nanoparticle ink is designed as DI water:2-methoxy ethanol:glycerol:ethylene glycol = 50:20:5:25 wt%. The effects of poly(styrene-co-maleic acid) as an adhesion promoter(AP) on rheology of aqueous Cu nanoparticle inks and adhesion of Cu pattern printed on polyimid films are investigated. The 40 wt% aqueous Cu nanoparticle inks with 0.5 wt% of Poly(styrene-co-maleic acid) show the Newtonian flow and has a low viscosity under 10 mPa·S, which is applicable to inkjet printing. The Cu patterns with a linewidth of 50~60 μm are successfully fabricated. With the addition of Poly(styrene-co-maleic acid), the adhesion of printed Cu patterns on polyimid films is superior to those of patterns prepared from Poly(styrene-co- maleic acid)-free inks. The resistivities of Cu films are measured to be 10~15 μΩ·cm at annealing temperature of 300 o C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call