Abstract

This study investigated the influence of polystyrene microplastics (MPs) with two different particle sizes (<1 mm, 1–5 mm) and three concentrations (1 g/m2, 10 g/m2, 50 g/m2), as well as added degrading bacteria, on the agronomic traits of highland barley and the bacterial communities in the rhizosphere soil. Results revealed that the small particle size treatment had a significant effect on reducing the 1000-grain weight of highland barley, while the large particle size treatment had an effect on reducing the spike length, width, and awn length (P < 0.05). Additionally, the MP treatment was found to significantly reduce the rhizosphere soil bacterial diversity and richness, including the Shannon, Chao1, observed species, and dominance indices (P < 0.05). Interestingly, the inoculation treatment also reduced microbial diversity, though the microbial diversity after treatment was similar to that of the control community structure, indicating its regulating effect on the soil microbial community. The abundance of Domibacillus, Pedosphaeraceae, and Enterococcus decreased due to the MP treatment, whereas Achromobacter, Massilia, Ralstonia, and Nitrosospira increased (P < 0.05). Furthermore, functional prediction indicated that MP treatment resulted in the enrichment of microbial functions, such as an AraC-type DNA-binding domain, etc. The microbial communities exposed to different sizes and concentrations of MPs had their own unique functions in response to the effects of the MPs. This study provided novel insights into the effects of different particle sizes and concentrations of MPs on the rhizosphere microbial community and agronomic traits of highland barley. It could be used to improve the understanding of the impact of MPs on the rhizosphere soil microecology and enhance bioremediation of MPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.