Abstract

Several epidemiological studies have shown an inverse association between the consumption of polyphenol-rich foods and risk of cardiovascular diseases. However, accuracy and reliability of these studies may be increased using urinary total polyphenol excretion (TPE) as a biomarker for total polyphenol intake. Our aim was to assess if antioxidant activity, measured by a Folin-Ciocalteu assay in urine, is correlated with an improvement in cardiovascular risk factors (blood pressure and serum glucose, cholesterol, HDL-cholesterol, LDL-cholesterol, and triglyceride concentrations) in an elderly population at high risk. A longitudinal study was performed with 573 participants (aged 67.3 ± 5.9) from the PREDIMED study (ISRCTN35739639). We used Folin-Ciocalteu method to determine TPE in urine samples, assisting with solid phase extraction. Participants were categorized into three groups according to changes in TPE. Multiple linear regression models were used to assess relationships between TPE and clinical cardiovascular risk factors, adjusting for potential confounders. After a 5-year follow-up, significant inverse correlations were observed between changes in TPE and plasma triglyceride concentration (β = −8.563; P = 0.007), glucose concentration (β = −4.164; P = 0.036), and diastolic blood pressure (β = −1.316; P = 0.013). Our results suggest that the consumption of more polyphenols, measured as TPE in urine, could exert a protective effect against some cardiovascular risk factors.

Highlights

  • Cardiovascular diseases (CVDs) are considered to be the leading global cause of death, accounting for 17.3 million deaths per year, which is predicted to rise to more than 23.6 million by 2030 [1]

  • After 5 years of follow-up of 612 participants randomly selected for this substudy of the PREDIMED trial, 39 were excluded because of extreme total polyphenol excretion (TPE) values, a total of 573 participants were included in the present study

  • Comparing nutrient intake at 5 years versus baseline, we observed a significant increase in total fat, fibre, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), K, and Mg, while other items such as total carbohydrates, protein, saturated fatty acids (SFA), Na, and cholesterol remained unchanged

Read more

Summary

Introduction

Cardiovascular diseases (CVDs) are considered to be the leading global cause of death, accounting for 17.3 million deaths per year, which is predicted to rise to more than 23.6 million by 2030 [1]. The main causes of CVDs involve nonmodifiable risk factors, such as age, sex, and family history of coronary heart disease (CHD), and modifiable risk factors, such as an unhealthy diet, lack of physical activity, smoking, and excessive alcohol intake [2, 3]. An improvement of dietary habits could help to prevent CVDs. Oxidative Medicine and Cellular Longevity. The cardiovascular protection by polyphenol consumption can be explained by various mechanisms, including their anti-inflammatory properties, antioxidant capacity, improvement in endothelial function, inhibition of platelet aggregation and antithrombotic properties, and mechanisms that are not mutually exclusive [4,5,6,7,8]. In order to analyse associations between polyphenol intake and main cardiovascular risk factors, there is a need for biomarkers that can accurately reflect polyphenol intakein human studies

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call