Abstract

We explored the specific impact of polyol pathway hyperactivity on dorsal root ganglia (DRG) using transgenic mice that overexpress human aldose reductase because DRG changes are crucial for the development of diabetic sensory neuropathy. Littermate mice served as controls. Half of the animals were made diabetic by streptozotocin injection and followed for 12 weeks. After diabetes onset, diabetic transgenic mice showed a significant elevation of pain sensation threshold after transient decrease and marked slowing of motor and sensory nerve conduction at the end of the study, while these changes were modest in diabetic littermate mice. Protein kinase C (PKC) activities were markedly reduced in diabetic transgenic mice, and the changes were associated with reduced expression of membrane PKC-alpha isoform that was translocated to cytosol. Membrane PKC-betaII isoform expression was contrariwise increased. Calcitonin gene-related peptide-and substance P-positive neurons were reduced in diabetic transgenic mice and less severely so in diabetic littermate mice. Morphometric analysis disclosed neuronal atrophy only in diabetic transgenic mice. Treatment with an aldose reductase inhibitor (fidarestat 4 mg x kg(-1) x day(-1), orally) corrected all of the changes detected in diabetic transgenic mice. These findings underscore the pathogenic role of aldose reductase in diabetic sensory neuropathy through the altered cellular signaling and peptide expressions in DRG neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.