Abstract

The increasing interest in fluorinated 5,11-bis(triethylsilylethynyl)anthradithiophene is motivated by the demonstrated high-performance organic field-effect transistors and circuits based on this organic semiconductor, complemented by reduced complexity processing methods that enable this performance. We identify two polymorphs of this material and report on their crystal structure, formation, and the effect of the different molecular packings on the electronic properties. The polymorphs are interconvertible through a phase transition that occurs at $T=294\text{ }\text{K}$. We study the variations in the electrical properties as a response to the structural changes induced by the phase transition in both single crystals and thin films, and discuss the technological implications that a room-temperature phase transition has on the performance and stability of devices fabricated with this organic semiconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.