Abstract

The clinical efficacy of chemotherapeutic drugs is hindered by their poor aqueous solubility, low bioavailability and severe side effects. In recent years, polymeric nanocarriers have been used for drug delivery to improve the efficacy of many chemotherapeutics. In this study, a series of biodegradable phenylalanine-based poly(ester amide) (Phe-PEA) with tunable molecular weights (MWs) were synthesized to systematically investigate the relationship between the polymer MW and the efficacy of the corresponding polymeric nanoparticles (NPs). The results indicated that a range of polymers with different MWs can be obtained by varying the monomer ratio or reaction time. Doxorubicin (DOX), a classic clinical lymphoma treatment strategy, was selected as a model drug. The loading capacity and stability of the higher MW polymeric NPs were superior to those of the lower MW ones. Moreover, in vitro and in vivo data revealed that high MW polymeric NPs had better anticancer efficacy against lymphoma and higher biosafety than low MW polymeric nanoparticles and DOX. Therefore, this study suggests the importance of polymer MW for drug delivery systems and provides valuable guidance for the design of enhanced polymeric drug carriers for lymphoma treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call