Abstract

The aim of this study was to investigate the effects of the molecular weight (Mw) of hydroxypropyl cellulose (HPC) and grinding duration on solid dispersions (SDs) formation and their characteristics. In this study, ternary amorphous SD systems containing curcumin (CUR), HPC, and sodium dodecyl sulfate (SDS) were developed using the milling method and characterized their physicochemical and mechanochemical properties. After 120-min grinding, the particle size reduced to under 1 μm and the GMs totally transformed into amorphous phase. The release behavior of CUR depended on the grade of HPCs due to their Mw and corresponding viscosity. During the SD formation process, the grinding time and Mw of HPC could be monitored by analyzing data obtained from MIR and NIR spectra based on chemometrics. There were two steps in SD formation: (1) simple dispersion with grinding time under 30 min and (2) random dispersion of mixtures with grinding time from 30 to 120 min. The HPC-M (700,000 Da) resulted in more effectively forming SD systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call