Abstract

Boron nitride (BN) nanomaterials are promising in biomedical research owing to their large surface area, graphene-like structure, and chemical and thermal properties. However, the toxicological effects of BN on erythrocytes and blood coagulation remain uninvestigated. The aims of our study were to synthesize glycol chitosan (GC)- and hyaluronic acid (HA)-coated BNs, and to investigate the effects of these BNs on human cancer cells, erythrocytes, and whole blood. We prepared hemocompatible forms of BN coated with GC and HA, and evaluated them using cell uptake/viability tests, hemolysis analysis and FE-SEM, as well as through hemorheological evaluation methods such as RBC deformability and aggregation, and blood coagulation. GC/BN and HA/BN were both ∼200 nm, were successfully taken into cells, and emitted blue fluorescence. Both BNs were less toxic than bare BN, even at higher concentrations. The aggregation index of human red blood cells (RBCs) after 2 h incubation with BN, GC/BN, and HA/BN was greatly influenced, whereas RBC deformability did not dramatically change. We found that GC/BN affected the intrinsic coagulation pathway, whereas both GC/BN and HA/BN affected the extrinsic pathway. Therefore, HA/BN is less detrimental to RBCs and blood coagulation dynamics than bare BN and GC/BN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call