Abstract

Soil, as a heterogeneous body, is composed of different-sized aggregates. There is limited data available on the potential role of microplastics (MPs) in microbial properties at the soil aggregate level. In this study, changes in microbial construction and diversity in farmland bulk soil and aggregates induced by polyethylene MPs (PE-MPs) were investigated at a dose of 0.5% (w/w) through 16s rDNA sequencing and enzyme activity measurements of different particle size aggregates in incubated soil. The presence of low-dose PE-MPs increased the proportion of >1 mm soil aggregates fraction, and decreased soil available nitrogen and available phosphorus in bulk soils. Furthermore, low-dose PE-MPs increased bacterial richness and diversity in 1–0.5 and < 0.25 mm fractions and decreased operational taxonomic unit, abundance-based coverage estimator, and Chao1 indices in bulk soil and >1 mm fractions. The levels of predicted functional genes taking part in the biodegradation and metabolism of exogenous substances also increased. At the phylum level, PE-MPs changed the proportion of Proteobacteria and Actinobacteria. The variations in soil aggregate properties were significantly correlated with the bacterial communities’ composition and diversity. This study deepens our perception of the soil microenvironment, microbial community composition, and diversity in response to PE-MPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.