Abstract
The size and distribution of particles suspended within a fluid influence the rheology of the suspension, as well as strength and other mechanical properties if the fluid eventually solidifies. An important motivating example of current interest is foamed cements used for carbon storage and oil and gas wellbore completion. In these applications, it is desired that the suspended particles maintain dispersion during flow and do not coalesce or cluster. This paper compares the role of mono- against polydispersity in the particle clustering process. The propensity of hard spherical particles in a suspension to transition from a random configuration to an ordered configuration, or to form localized structures of particles, due to flow is investigated by comparing simulations of monodisperse and polydisperse suspensions using Stokesian dynamics. The calculations examine the role of the polydispersity on particles rearrangements and structuring of particles due to flow and the effects of the particle size distribution on the suspension viscosity. A key finding of this work is that a small level of polydispersity in the particle sizes helps to reduce localized structuring of the particles in the suspension. A suspension of monodisperse hard spheres forms structures at a particle volume fraction of approximately 47% under shear, but a 47% volume fraction of polydisperse particles in suspension does not form these structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.