Abstract

The effects of extracellular and intracellular polyamines (PAs), spermine and putrescine, on the cation current (mI(CAT)) evoked either by activating muscarinic receptors with carbachol or by intracellularly applied GTPgammaS (in the absence of carbachol) were studied using patch-clamp recording techniques in single guinea-pig ileal myocytes. Extracellular spermine and putrescine rapidly and reversibly inhibited mI(CAT) in a concentration- and voltage-dependent manner with the IC(50) values at -40 mV of about 1 and 5 mM, respectively. Membrane depolarization relieved the blocking action of PAs although cation conductance activation curve remained N-shaped. The inhibition was similar for both carbachol- and GTPgammaS-evoked currents, suggesting that the cation channel rather than the muscarinic receptor was the primary site of the PA action. In outside-out membrane patches, both cation channel unitary conductance and open probability were reduced. In perforated-patch experiments used to retain cytoplasmic PAs sustained 100 microM carbachol-induced mI(CAT) was significantly smaller (478 +/- 76 pA, n = 7) compared to that recorded using conventional whole-cell configuration with nominally PA-free pipette solution (1314 +/- 76 pA, n = 12), but comparable in size to mI(CAT) with 0.3 mM spermine in the pipette solution (509 +/- 41 pA, n = 19). Intracellular putrescine inhibited mI(CAT) less potently compared to spermine. In conclusion, these results show a novel role of intestinal PAs in mI(CAT) inhibition, which can contribute to their well-known suppressing effect on the gastrointestinal smooth muscle excitability and contractility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call