Abstract

In this work, nanocomposite membranes were prepared using silver nanoparticles (Ag) attached to poly(amidoamine) dendrimer (P)-functionalised multi-walled carbon nanotubes (CNTs) blended with poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) polymeric membranes (i.e., AgP-CNT/PVDF-HFP) via the phase inversion method. The nanocomposites were characterised and analysed via transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX), thermal gravimetric analysis (TGA) and Brunauer–Emmett–Teller (BET) analysis. The TEM and EDX analyses confirmed the presence of Ag nanoparticles on the nanocomposites, while the SEM and BET data showed the spongy morphology of the nanocomposite membranes with improved surface areas. The sample analysis of surface water collected from the Sekhukhune district, Limpopo Province, South Africa indicated that the water could not be used for human consumption without being treated. The nanocomposite membranes significantly reduced the physicochemical parameters of the sampled water, such as turbidity, TSS, TDS and carbonate hardness, to 4 NTU, 7 mg/L, 7.69 mg/L and 5.9 mg/L, respectively. Significant improvements in microbial load (0 CFU/mL) and BOD (3.0 mg/L) reduction were noted after membrane treatment. Furthermore, toxic heavy metals such as chromium, cadmium and nickel were remarkably reduced to 0.0138, 0.0012 and 0.015 mg/L, respectively. The results clearly suggest that the AgP-CNT/PVDF-HFP nanocomposite membrane can be used for surface water treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call