Abstract

It is cost-effective protocol to identify a functional species pool for marine bioassessment by removing redundant species from a raw dataset. The feasibility of functional species pool for discriminating water quality status was studied based on a dataset of 120 samples of ciliated protozoa. From the full 60-species dataset of the whole ciliate communities, a 35-species subset was identified as a functional species pool, the species number, abundance and biodiversity indices of which were significantly correlated with those of the full species dataset. The spatial pattern of the subset was significantly related to the changes in nutrients soluble reactive phosphates (SRP), nitrate/nitrite nitrogen (NO3-N/NO2-N) and ammonium nitrogen (NH4-N). Four indices of the taxonomic diversity (Δ), taxonomic distinctness (Δ*), average in taxonomic distinctness (Δ+) and the variation in taxonomic distinctness (Λ+) based on this small species pool were significantly correlated with the changes of nutrients NO3-N and/or (NH4-N). The paired indices Δ+ and Λ+ showed a clear decreasing trend of departure from the expected taxonomic pattern. These findings suggest that the 35-species functional species subset may be used as a feasible functional surrogate of ciliated protozoan assemblages for community-based bioassessment in marine ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call