Abstract

Polarization-field effects on the vertical transport in GaN/AlGaN resonant tunneling diodes (RTDs) were theoretically investigated by using the transfer matrix formalism. The self-consistent model shows that the resonant peaks are shifted toward higher energies with increasing Al composition in the AlGaN barrier, and the transmission probability values are shown to decrease rapidly. In the case of the flat-band model, on the other hand, the shift of the resonant peaks is smaller than it is for the self-consistent model and the variation of transmission probability values with increasing Al composition is relatively smaller than that of the self-consistent model. The current-voltage characteristics of the self-consistent model are asymmetric while those of the flat-band model are symmetric for positive and negative current directions. The peak-to-valley ratio (PVR) of the self-consistent model is shown to be slightly smaller than that of the flat-band model for Al = 0.3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.