Abstract

BackgroundPotato (Solanum tuberosum L.) continuous cropping causes the decrease of tuber yield, deterioration of quality and soil degradation in the semi-arid area. These negative effects can generally be mitigated by legume rotation and mulching. However, little is known about how can mulching and legume rotation alleviate the above damage through altering soil environment.MethodsA field experiment was conducted to investigate changes in soil properties and microbial community in response to legume rotation and mulching under six planting patterns: potato continuous cropping without film mulching (PC), potato continuous cropping with film mulching (PCF), potato–broad bean rotation without film mulching (R1), potato–broad bean rotation with film mulching (R1F), potato–pea rotation without film mulching (R2) and potato–pea rotation with film mulching (R2F).ResultsCompared with the PC, the R1F and R2F had significantly enhanced the contents of alkaline nitrogen (AN), available phosphorus (AP), available potassium (AK), total carbon (TC) and total nitrogen (TN), but reduced soil pH and electrical conductivity (EC). The Shannon index of fungi in R1F and R2 was significantly higher than other treatments. The dominant bacterial and fungal phyla of each treatment was Proteobacteria and Ascomycota. R1, R1F, R2 and R2F enhanced the relative abundance of metabolic fungi and altered key differential microbial species. Soil EC, AN and AK were major factors influencing the soil bacterial and fungal communities.ConclusionOverall, the study demonstrated that potato-broad bean/pea rotation with mulching can be adopted as the preferred cropping systems to alleviate potato continuous cropping obstacles through enhancing soil fertility and regulating soil microbial communities in the semi-arid of Loess Plateau, China.Graphical

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.