Abstract

Dust acoustic solitary waves in a dusty plasma containing dust of opposite polarity (adiabatic positive and negative dust), non-isothermal electrons and ions (following vortex like distribution) are theoretically investigated by employing pseudo-potential approach, which is valid for arbitrary amplitude structures. The propagation of small but finite amplitude solitary structures is also examined by using the reductive perturbation method. The basic properties of large (small) amplitude solitary structures are investigated by analyzing the energy integral (modified Korteweg-de Vries equation). It is shown that the effects of dust polarity, trapping of plasma particles (electrons and ions), and temperatures of dust fluids significantly modify the basic features of the dust-acoustic solitary structures that are found to exist in such an opposite polarity dust-plasma medium. The relevance of the work in opposite polarity dust-plasma, which may occur in cometary tails, upper mesosphere, Jupiter's magnetosphere, is briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.