Abstract

AbstractIn this paper the classical theory of Above Threshold Ionization (ATI) in the oxygen plasma was used to show how the residual electron energy depends on the laser parameters such as pulse length, wavelength and peak intensity. The value of ATI energy is found to increase with laser wavelength and its intensity. Our study conducted for three cases of τ > 2π/νp, τ = 2π/ωp, and τ < 2π/ωp, where ωp is the plasma frequency, reveals that the ATI energy is decreased for the pulse duration τ ≠ 2π/ωp. Also it is showed how the space charge effect can reduce the residual electron energy to a minimum value, in a suitable condition. By optimizing various parameters, we can generate the cold electrons suitable for the recombination x-ray laser.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.